Post Installed Anchors

Brad Maier, P.E. Field Engineering BMaier@strongtie.com (253) 670-9010

Types of Anchors – Visual Overview

Cast-in-Place

Bolt or stud that is installed prior to pouring concrete

<section-header>

Chemical adhesive hardens and bonds between the base material and the anchor

Post-Installed

Mechanical Anchors

Creates interlock with the base material through friction or undercutting

Codes

ACI 318

ACI 355.2

ACI 355.4

AC 308 and others

	ES ICC EVALUATION SERVICE*	
	www.icc-es.org (800) 423-6587 (562) 699-0543	A Subsidiary of the International Code Council®
hers	ICC-ES Evaluation Report ESR-2713	Reissued September 2022 Revised August 2023 This report is subject to renewal September 2023.

Evaluation reports

3 Concrete Training Series

Qualified Base Materials

Normal-Weight Concrete

Lightweight Concrete

Hollow and Grout-Filled Concrete Block (CMU)

Unreinforced Brick (URM)

4 Concrete Training Series

Major Components

Adhesive Anchors

Adhesive Anchor Update – AT-3G

AT-3G – High Performance Cold Weather Adhesive

- Premier bond strength
- Fast-cure
- Approved for Rebar Development Length
- Dry, Saturated, and Water-Filled Hole Tested

C-A-2023, pg 42

Adhesive Anchors

Adhesive Anchor Update – AT-3G

AT-3G – High Performance Cold Weather Adhesive

- Premier Bond Strength
 - Anchor Category 1

Adhesive Mixture

A Two-Part System

- A resin + a hardener/initiator are combined and mixed through a multi-element static mixing nozzle
- Once combined, the chemical reaction causes the mixture to harden and bond to base materials

Common Installation Conditions

Dry and Damp Holes

Horizontal and Overhead Applications

Reliability Testing per ICC-ES AC308 is defined as:

- Dry Concrete Cured concrete whose moisture content is in equilibrium with surrounding non-precipitate atmospheric conditions.
- Water-Saturated Concrete Concrete that has been exposed to water over a sufficient length
 of time to have the maximum possible amount of absorbed water into concrete pores to a
 depth equal to the anchor embedment.
- Submerged Concrete Water-saturated concrete that is fully submerged at the time of hole drilling and anchor installation.
- Water-Filled Hole Drilled hole in water-saturated concrete that is clean yet contains standing water at the time of installation.

Wet and Water-Filled Holes

Adhesive Anchor Installation

Drilling Overview: Drill, Blow, Brush, Blow

- 1. A hole is drilled to the specified depth.
- 2. It is then blown out with oil-free compressed air.
- 3. It is brushed to remove debris.
- 4. Finally blown out once again with oil-free compressed air.

Drilling Overview: Vacuum Dust Extraction Systems

- Uses a patented method of vacuuming the dust through the drill tip while the hole is being drilled
- Addresses the concern of *silica exposure*, providing health and safety benefits to operators and others around the construction site

Step 1	Introduction
Step 2	The basic procedure is the same for most adhesive formulations. The following instructions cover how to prepare an adhesive cartridge.
Step 3	Note: Make sure all holes are drilled and prepared before preparing the adhesive.
Step 4	
Step 5	

Open the cartridge per packaging instructions.

This will include either cutting or snapping off the top of the cartridge.

Step 5 Dispense

Dispense some adhesive off to the side until the adhesive is properly mixed (uniform color).

Insert Installation

19 Concrete Training Series

Epoxy-Based Adhesives vs. Acrylic-Based Adhesives

Epoxy Adhesive Anchors

Advantages

- Excellent adhesion to a broad range of substrates
- Low degree of shrinkage during cure
- Good chemical resistance
- Extensive shelf life
- Extended working time
- More flexible hole sizes

The chart to the right shows *long* gel and cure times, which allows for *high jobsite versatility*, since it can be installed over a long period of time, in *dry, water-saturated or water-filled holes*.

Disadvantages

- Minimum base material temperature
- Extended working time
- Slower cure time

Concrete Temperature		Gel Time	Cure Time
(°F)	(°C)	(min.)	(hr.)
40	4	120	192
50	10	75	72
60	16	50	48
70	21	35	24
90	32	25	24
100	38	15	24

Long Gel and Cure Times

Hybrid Adhesive Anchors

Advantages

- All-weather formula
- Easy to dispense
- Fast cure time

Disadvantages

- Critical hole size
- Faster gel time in hot temperature may be too fast to work with

	Cure Time	Gel Time	Base Material Temperature	
	(hr.)	(minutes)	°C	°F
	5	50	-5	23
	31/2	25	0	32
	2	15	5	41
times	1	10	10	50
2. Cartric	40 min.	6	15	59
of inst	30 min.	3	20	68
3. For ins	30 min.	2	30	86
23°F (-	30 min.	2	40	104

AT-3G Cure Schedule

 Cartridge temperature must be between 41°F (5°C) and 104°F (40°C) at the time of installation.

For water-saturated concrete, the cure times must be doubled.

For installation in temperatures below 23°F (-5°C), see p. 241 (Supplemental Section) for more information.

Advantages of Adhesive Anchors

- High loads
- Vibration resistant
- High strength at shallow embedment
- Small anchor spacing and short edge distances
- Precise location of anchors after concrete is cured (avoids mislocated cast-in-place anchors)

Installation Overview

- Cartridge preparation
- Dry and damp holes
- Water-filled holes

- Overhead and horizontal anchorage
- Hollow base materials

Note: All holes need to be properly drilled and prepared before installation.

Piston Plug Delivery System

- Easy to use and reliable
- Dispenses adhesive into drilled holes for threaded rod and rebar dowel installations in overhead, upwardly inclined and horizontal orientations
- Virtually eliminates formation of voids and air pockets during adhesive dispensing

Screen Tubes

- Screen tubes are designed to contain adhesive around the anchor.
- They are vital to the performance of adhesive anchors in base materials that are hollow or contain voids, such as hollow block and brick.

Post-Installed – Mechanical Anchors

"

... a post-installed anchor that derives its holding strength from either the expansion of an element against the sides of a drilled hole, or a mechanical interlock between a component of the anchor and the base material.

Edge Distance and Spacing Requirements

Edge distance

The distance between the anchor centerline and the free edge of the concrete or masonry member.

Critical edge distance

The shortest edge distance at which the anchor capacity is applicable without reductions.

Minimum edge distance

The least edge distance at which the anchors are tested for recognition.

Spacing

The distance between anchors, centerline-to-centerline.

Qualified Base Materials

Normal-Weight Concrete

Lightweight Concrete

Concrete Block (CMU)

Lightweight Concrete over Metal Deck

Common Mechanical Anchor Types

Expansion Anchors

Heavy-Duty Screw Anchor

Heavy-Duty Screw Anchors

Wedge Anchor

Adhesive Anchors

Adhesive Anchor Update – Web Apps

Splice Information			Exit	ting cast-in-place	
Application Ø			E	disting concrete	ew concrete
Development Length	~				J
Concrete Informati	ion			Post-in Development length	stalled ing bar
Concrete Type 😡		Concrete Compressive	Strength, f'_c (psi) 🙆	Lap Splice Application	
NWC	~	4,000	~	en e	
			Exis	ting concrete	ew concrete
Rebar Information				Post-int	Jalled
Rebar Size (#) 😡		Rebar Yield Strength, j	_{1/} (ksi),	Development length	ing bar
8	×	60	\sim	Development Length Application	
Rebar Coating 🛛		Rebar Spacing (Center	to-Center), S 😡		
Uncoated / Zinc coated	\sim	8	in		
Minimum Clear Gover, C _{min} (0				
3	in				
Excess Reinforcen	nent	e to excess reinforcement (Ø		
A _{s,required}		A _{s,provided}			
0.79	in ²	0.79	in®		
Seismic Design Ca Seismic Design Category @ Note: For SET-XP in SDC C-F	ategory	2500psi for calculation purj	poses only.		
Seismic Design Ca Seismic Design Category @ Note: For SET-XP in SDC C-F C-F	tegory F fc is limited to : V	2500psi for celculation purj	poses only.		

Model No.	Tension Development Length, l_{dt} (in)	Compression Development Length, l_{dc} (in)	Drill Bit Diameter, $d_{ m hole}$ (in)
SET-XP®	36.00 Launch ACE	24.00 Launch ACE	1.125
SET-3G [™]	28.50 Launch ACE	19.00 Launch ACE	1.125
AT-3G TM	28.50 Launch ACE	19.00 Launch ACE	1.125
Notes			
. For SET-XP [®] the valu	e of ${f^{\prime}}_c$ used to calculate development lengths is li	imited to 2,500 psi when Seismic Design Category C	-F is selected.
. Adhesive installation	instructions and parameters can be found at Ancho	oring Adhesives Technical and Installation Notes.	
		New concrete	
	Existing concrete	New concrete	
	\\// \ //		
		Post-installed	
		reinforcing bar	
	Developmen	t length	
	Developme	ent Length Application	
	Developmen	t length	

Thank you!

